
Using Apache VCL and OpenStack to provide a
Virtual Computing Lab

Curtis Collicutt and Cameron Mann
Cybera

2-59C Computing Science Centre
University of Alberta

Edmonton, Alberta, T6G 2E8
{curtis.collicutt, cameron.mann}@cybera.ca

Abstract—Post-secondary institutions are looking for ways
to provide virtual computing labs to students. Using the open
source systems Apache VCL and OpenStack, as well as a pre-
existing OpenStack provisioning module for Apache VCL, we
implemented a pilot project to provide virtual computing labs. As
the pilot continued we altered and improved our implementation
and discovered new requirements. These improvements and
lessons learned are presented here.

Keywords—Apache VCL, OpenStack, Virtual Computing Lab

I. INTRODUCTION

Virtual desktop infrastructure (VDI) is an attractive solu-
tion to organizations that need to support large numbers of
physical desktops or computing labs with increasingly smaller
budgets and fewer staff. Some organizations, particularly post-
secondary institutions, are searching for a relatively inexpen-
sive solution for virtual desktop infrastructure (VDI) to either
replace or enhance traditional computing labs.

A. Enterprise VDI

Typically, enterprise VDI solutions are expensive and in
order to support input/ouput operations per second (IOPS)
intensive workloads such as Windows 7 virtual machines, re-
quire considerable investment in backend storage technologies.
Further, VDI deployments are often on a much larger scale
than virtualized servers–for example, 500 virtual servers is a
relatively large deployment, but 500 virtual desktops is not.
Complicating the issue is that organizations often try to expand
their existing enterprise server virtualization system in order to
support VDI, but the workload associated with VDI requires a
different architecture than the average enterprise virtualization
deployment.

B. Virtual Computing Lab Requirements

Virtual computing labs do not necessarily have the same
requirements as enterprise VDI systems. In our deployment of
Apache VCL [1] the virtual machines are stateless and thus do
not require persistent storage. Further, physical computer labs
are not usually 100% utilized. In fact it is not unusual to find a
ten or twenty-to-one ratio in terms of total Apache VCL system
users to concurrent users. In cases of 100% concurrent instance
utilization students can make reservations for future time slots
via the scheduling system provided by Apache VCL. IPv4
exhaustion is also an issue, and until IPv6 is well supported,

network address translation (NAT) seems like the only way
to reduce IPv4 usage and still provide remote access to a
large number of virtual desktops. Finally, users usually access
virtual computing labs from their own devices instead of a thin
desktop or other similar device.

C. Need for VDI-lite

The above issues, requirements, and use-cases suggest
that there is a need for a VDI system that is somewhere
between a relatively plain virtualization platform, such as a
bare hypervisor, and a full blown Enterprise VDI system–
something that we have been calling “VDI-lite.”

II. BACKGROUND

Apache VCL is an open source cloud computing plat-
form that can provision virtual machines, provide time-based
reservations, and broker remote sessions. OpenStack [2] is
open source software used to create public and private clouds,
including infrastructure as a service functionality that can be
utilized by Apache VCL.

A. Pilot Project

Part of Cybera’s mandate as an organization is to ex-
plore and apply new technologies. In previous work, Cybera
had investigated enabling Apache VCL to provision virtual
machines using the Amazon Web Services Elastic Compute
Cloud (AWS EC2). OpenStack can operate in a similar fashion
to EC2, and in fact supplies API compatibility with core
AWS services. Given that Cybera employs OpenStack in other
projects, we resolved to determine whether using OpenStack
as the underlying provisioning system for Apache VCL is
appropriate, performant, and cost effective.

Cybera worked with the University of Alberta and other
educational institutions in Alberta to implement the pilot which
provided virtual computing lab resources to students. Over the
course of the pilot, Apache VCL provisioned thousands of
reservations and virtual machines to hundreds of users, and
also managed terabytes of environment images (Table I and
Figure 1). Students were provided access to a wide variety of
application software, from Matlab to Photoshop to ArcGIS,
among others.



TABLE I. VCL USAGE - DEC 2012 TO APRIL 2014

VCL Usage Statistics
OpenStack Instances Created 5995

VCL Images 75
Reservations 4386
Hours Used 9979

“Now” reservations 4206
“Later” reservations 185

Load times less than 2 minutes 3641
Load times greater than 2 minutes 745

Total Users 944
Course Statistics

Courses offered using VCL 31
Students enrolled in courses 1480

Fig. 1. Reservations by Day

B. OpenStack Apache VCL Module

We used the OpenStack module originally developed by
Young-Hyun Oh [3] as the foundation for our VCL installation.
As we gained experience using the module in a production
system we made modifications to improve its reliability, in-
cluding switching to a Perl SDK [4] to provide bindings to
the OpenStack Compute API. The updated OpenStack module
will be contributed back to Apache VCL for use by other
interested groups. Other challenges included the overlap in
provisioning tasks that OpenStack and VCL perform and the
accommodations that must be made to avoid interference. For
example, VCL expects its virtual machines to always have the
same IP addresses while instances created in OpenStack have
a range of possible addresses. This was a recurring problem
that took multiple attempts to solve successfully.

C. OpenStack Deployment

The OpenStack deployment for our pilot project was only
used by the Apache VCL system. While we did support
multiple post-secondary institutions with this single “cloud,”
VCL was its only tenant. Most OpenStack clouds will support
many tenants, and in fact, future work for our pilot as it moves
into a new phase is to run within a larger OpenStack cloud with
multiple tenants.

Cybera installed OpenStack Essex on a system comprised
of eight Dell PE C6220 servers in two C6000 chassis. Each
server had two Xeon E5-2650 2GHz processors and 128GB
of RAM. One node was used as the OpenStack management
node with the remaining seven set up with commodity solid
state drives in a RAID 0 configuration. A Cisco 2960 was used
as a management switch and an Arista 7050 as the top of rack
switch.

Fig. 2. Mapping VCL Computers to OpenStack Instances

III. OPENSTACK PROVISIONING MODULE

To run VCL on OpenStack, an appropriate provisioning
module was required. We had previously started development
of an EC2 provisioning module with the hope of supporting
multiple platforms, however incomplete implementation of
the EC2 API in OpenStack meant this was not a feasible
solution. It was around this time that Young-Hyun Oh posted
his prototype OpenStack provisioning module using the Nova
API to the VCL mailing list [5]. The module had all the
functionality we needed despite not configuring public access
to any instances it created. Public access was instead enabled
through a NAT patch we created since we did not have enough
IP addresses to assign one to each instance. However, because
the instances are not publicly accessible without NAT, the
management node must be run as an instance within the same
OpenStack tenant.

In terms of integration with VCL, a VM host must be
configured for the provisioning module. However, this host
does not correspond to any physical machine, but instead
should be thought of as representing the Nova API endpoint
of the OpenStack cloud. Virtual machine computers must then
be created in VCL and added to that VM host in the same way
as usual, though the MAC and IP address fields are ignored.
The provisioning module then creates and maps OpenStack
instances to VCL computers when reservations are created.
In Figure 2 we can see how the VM host bridges VCL and
OpenStack.

Since adopting the OpenStack module we have made a
number of changes. The major recurring issue we ran into
revolved around VCL’s use of the hosts file to map the names
of computers in VCL to their IP addresses. The first way
VCL uses the hosts file is for all remote commands which are
executed using the computer name and thus must be mapped
to an IP address. The second way is to look up a computer’s IP
address. VCL first checks to see if the IP address has already
been retrieved and is in memory; if not the hosts file is checked
next and finally the database if it is not present in the hosts
file. This behaviour depends on a static DHCP configuration
such that each VCL computer receives the same private IP
address every time. However, OpenStack uses dynamic DHCP,
meaning that instances will not always receive the same private
IP address. The original OpenStack module already handled
this by dynamically updating the hosts file when an instance
was created or deleted. It is worth noting that in our original
EC2 provisioning module we also used this approach.

We started to see a number of duplicate entries where



multiple computers would have the same private IP address,
incorrect entries, and missing entries. The main symptom that
resulted was multiple users could end up reserving the same
computer and competing for access. In a very rare failure
case this caused the management node to delete itself when
VCL incorrectly identified its own instance as belonging to
a reserved computer. This could happen because VCL would
retrieve an incorrect IP address from the hosts file and use it to
look up the incorrect instance in OpenStack. Our initial fix was
to add a database table to map VCL computers to OpenStack
instances to guarantee uniqueness and avoid identifying the
wrong instance. We still, however, updated the hosts file for
compatibility as that is how the core VCL code retrieves the
private IP address for a computer.

Despite adding the computing mapping table the issue
of missing IP addresses in the hosts file continued, though
remote commands to those instances still completed. It was
at this point we realized that OpenStack creates DNS entries
for all instances based on their hostname, which matches the
computer name in VCL. This meant that even with missing
entries in the hosts file, VCL would be able to contact those
instances. However, VCL would still fail when trying to
retrieve those private addresses from the hosts file. We decided
that rather than trying to manage the hosts file through the
provisioning module, the better approach would be to modify
core VCL code. We removed the code in VCL that checks
the hosts file and replaced it with a DNS lookup. Since this
fix we have experienced no further issues. However, further
changes are still needed to integrate our code upstream as this
fix will break VCL on most other platforms, including even
other OpenStack clouds with different network configurations.

This is one area where we believe that changes to VCL
are required to provide production ready OpenStack support,
or any similar platform. Dependency on static resources like
the hosts file conflicts with the dynamic nature of the cloud.
There are a number of possible solutions to this issue, but the
one that we favor is for VCL to query the provisioning module
for the private IP address before checking the hosts file. This
solution was suggested as a possibility on a recent VCL Office
Hours call and would maintain backwards compatibility while
allowing VCL to handle environments where the networking
is less static than expected on a case-by-case basis.

IV. NETWORK ADDRESS TRANSLATION

We required NAT support because we did not have enough
public IP addresses to assign one to each virtual machine.
We had already developed and deployed a NAT patch before
transitioning to OpenStack, however some additional changes
were necessary to support the new environment.

The NAT patch maps ports on the VCL management
node’s public interface to ports on the private interfaces of the
virtual machines. For this to work in OpenStack it requires the
management node to be virtualized and running in the same
tenant as the instances it provisions so that it can access their
private interfaces. Additionally, when running in OpenStack
the management node will not have it’s own public interface.
Instead, OpenStack provides a floating IP address which will
be mapped to its private interface using NAT. Because the
management node is unaware of this mapping, we manually

set the IP address of the VM host in VCL to the floating IP and
modified our patch to use that value for the public IP address
of all computers assigned to that host.

The end result is that each OpenStack instance is behind
two layers of NAT. The first is from the floating IP address
to the private IP address of the VCL management node and
second is the private IP address of the management node to
the private IP address of the instance.

V. APACHE VCL AND OPENSTACK DEPLOYMENT

Cybera has several differences in its deployment when
compared to what could be considered more standard or
commonplace uses of Apache VCL.

A. Operating System Packaging

Currently the Apache VCL software is not officially pack-
aged for the CentOS/RedHat operating systems, and is instead
installed by downloading and extracting a compressed tar file.
Cybera undertook the work to package Apache VCL into an
RPM, which is the default packaging system for CentOS and
RedHat. This provides several advantages.

Using an RPM package that has dependencies defined
makes installation of Apache VCL quick and repeatable.
Because a goal of our project was to automate the installation
and configuration of Apache VCL, using packages to install
the software makes the use of configuration management
systems easier, especially in terms of the common package,
configuration file, and service workflow.

Another useful feature of RPM packages is that the files
in the package automatically have a checksum assigned. This
means that in the case of a security incident the checksums of
files can be easily verified using the RPM command.

B. Automated Configuration Management

One of the major goals for this project was to automate the
installation and configuration of Apache VCL using configu-
ration management tools such as Chef, Ansible, and Puppet.
While in our project VCL is installed with an RPM package,
it is not configured by that RPM.

Cybera implemented automated installation and configura-
tion of VCL in both Ansible and Chef. In the end we found that
Chef can have additional requirements, such as a central Chef
server, which may add too much overhead for this particular
project. Currently we deploy new Apache VCL environments
using Ansible. This is not to say that Chef was unsuitable,
rather that in a larger environment with more management
nodes the overhead and functionality of Chef infrastructure
would be more appropriate.

Using Ansible we can deploy a new Apache VCL instance,
including the web front-end, the database server, and the
management node, in a few minutes and do so in a repeatable,
testable way. This allows us to create development and test
environments relatively easily which helps to maintain a stable
production server. Traditional administration usually treats
servers as long-running, one-off systems. However, with cloud
computing infrastructure such as OpenStack it is preferable
to treat servers as systems that can be easily destroyed and
subsequently recreated.



VI. OVERCOMMITTING COMPUTE RESOURCES

One of the key benefits of virtualization is the ability to
overcommit resources such as memory, CPU, and disk. In our
Apache VCL project we experimented with overcommitting.
Unfortunately, the usage of Apache VCL in this project did not
approach a level high enough to invoke overcommitting, but
we expect that as this system moves from pilot to production
the number of concurrent users will increase.

A. Kernel Samepage Merging

Our OpenStack compute nodes run Ubuntu Precise 12.04.
By default in this version of Ubuntu a process called ksmd
is enabled and running. ksmd essentially provides memory
deduplication. In situations where many of the same virtual
machines are instantiated, such as multiple Windows 7-based
instances, ksmd can reduce memory usage by constantly
scanning and deduplicating memory. This allows for more
concurrent virtual machines without additional hardware.

In our current environment we have set the sleep time for
ksmd to 20 milliseconds and the number of pages to scan at
20000. This is higher than the defaults of 200 milliseconds and
100 pages. Depending on those settings ksmd can use 100%
of a single core, which would reduce the number of cores
available to virtual machines and the hypervisor, but in our
deployment this is a useful tradeoff.

B. Solid State Drives and Windows Boot Storms

The concept of boot storms is well known in virtual desktop
infrastructure (VDI). Windows 7 virtual machines can require
considerable storage input/outputs per second (IOPS) during,
and shortly after, their boot process. In our experiments we
found that booting many Windows 7 virtual machine in a
short amount of time can require up to 8000 IOPS. Given that,
depending on configuration and testing parameters, a RAID 10
array of six SATA drives can only provide approximately 400
IOPS, we had concerns regarding storage performance.

We resolved to provide more storage performance by im-
plementing striped solid state drives in the OpenStack compute
nodes. Each of our compute nodes has at least three consumer-
level solid state drives installed in a RAID 0 (or striped)
configuration. In testing, the slowest of these configurations
provided over 50000 IOPS.

We then tested Windows 7 boot storms. In the graph “IOPS
used in a windows bootstorm” (Fig. 3) the fast boot storm was
30 Windows 7 virtual machines booted 20 seconds apart. The
slow boot storm, shown in red, involved the same procedure
but each instance was booted 240 seconds apart.

In both cases, the system used at least 5000 IOPS. Given
the results it may be that a storage system which provides a
good amount of caching, such as ZFS with spinning drives
and SSD caching, or other similar functioning systems, could
provide enough IOPS to avoid boot storm congestion without
having to resort to striped SSDs.

Interestingly, once a Windows 7 virtual machine has booted
and been running for a few minutes, the IOPS usage drops con-
siderably, to almost zero. However, during the boot process–
and for a short while after booting–the virtual machines present
considerable disk usage.

Fig. 3. IOPS Used in a Windows Bootstorm

One of the main features of Apache VCL is that when
a reservation is completed the virtual machine which backed
the reservation is not necessarily deleted. Instead, when a new
user requests a reservation for the same environment, the same
virtual machine may be re-provisioned in terms of the user
data, and then re-used. This reduces the potential for boot
storms, makes reservations for users faster, and reduces IOPS
load as a new virtual machine does not need to be booted.

VII. LESSONS LEARNED

During the course of our pilot project we discovered issues
with our implementation, and new requirements.

A. Golden Image Sprawl

As our pilot project continued and new environments were
created, we found that even with a relatively small number of
classes the total number of golden images in our repository
became unmanageable for two main reasons.

The first is that because every image is a golden image,
the time it takes to update all the images with security
patches grows linearly with each new image. Currently we
have approximately 20 production Windows 7 golden images,
which would take upwards of a week to update in terms of
operating system patches.

The second issue is that because a new image can be
created from any pre-existing VCL image, flaws in that image
will be reproduced in the new image, and future images, in an
almost viral fashion. Over time, a small mistake in the image
configuration can spread across the entire image repository. For
example some Windows images did not have disk checking
disabled for the system disk, and at a point in time virtual
machines based on these images began checking their system
disk on every instantiation–a process which can take more than
ten minutes. Apache VCL would then fail the reservation and
computer due to a time out.

In retrospect, this golden image sprawl is a common issue
with VDI implementations, and there are commercial solutions
available to help resolve it. Most of these solutions enable an
application virtualization or layering process in which there
are perhaps only one or two golden images. Virtual machines
based on those images will have various software and con-
figurations layered on top of those golden images when they
are provisioned. Instead of having 20 different golden images,



there will only be one or two, and different environments are
actually defined by the application virtualization or layering
system.

B. License Management

Software licenses which had to be installed directly into
the golden image complicated our workflow. More than once
we had software with expired licenses and had to recreate
the golden image with a new license. In almost all situations
it’s better to have software that requests licensing from a
remote license server so that golden images do not have to be
recreated. Application virtualization may also help to reduce
this issue.

VIII. FUTURE WORK

A. Multi-tenant OpenStack Cloud

Our pilot system was deployed into a standalone Open-
Stack Essex cloud in which it is the only tenant. In the coming
months we will deploy Apache VCL into a more modern
OpenStack cloud that has multiple tenants.

B. Non-virtualized Management Node

Currently we have two dependencies that require us to vir-
tualize the Apache VCL management node in the OpenStack
cloud we want to use for provisioning. First is our use of
OpenStack’s DNS configuration to resolve computer names to
IP addresses. Second is NAT which requires the management
node to have access to the private network of the instances.

NAT is easily removed as a dependency if an adequate
supply of public IP addresses are available; the OpenStack
provisioning module would only require minor modification to
automatically attach a public IP address when an instance is
created. If this is not the case, a separate NAT implementation,
likely integrated with the provisioning module, would need to
be developed as the current patch is designed around using the
management node as the gateway.

Migrating the management node out of the cloud and
removing the DNS dependency would also require the pro-
visioning module to automatically attach floating IP addresses
to provide public access to the instances. Apache VCL would
also need to be made aware of these floating IP addresses. If
a static pool of addresses is available this could be done using
current mechanisms by assigning each computer in Apache
VCL one of the floating addresses as its public IP which
the provisioning module could use to always attach the same
address to the corresponding instance. If this isn’t the case a
step would likely have to be added in Apache VCL to query
the appropriate provisioning module for a computer’s public
IP address.

C. Gridcentric Virtual Memory Streaming Integration

Gridcentric [6] provides an innovative product called VMS,
or Virtual Memory Streaming, which integrates with Open-
Stack and supports the KVM and Xen hypervisors. VMS
allows the launch of live images which greatly reduces storage
IOPS requirements, and also provides the ability to increase
the density of virtual machines on a compute node by a factor
of two to five times.

Gridcentric provided patches to the Perl OpenStack API
to support VMS, which will allow us to integrate it into our
OpenStack Apache VCL module.

D. Improved Remote Access

Our pilot consisted of only Windows 7 virtual desktops and
remote access was provided via Microsoft’s remote desktop
protocol (RDP) using various end clients. Noting that other
VDI deployments often utilize different software and protocols
(such as PC-over-IP or Spice) to provide remote access, we
will be investigating implementing other connection methods
in hopes of improving the performance of remote access,
especially given students often access the virtual computer lab
from home, or over campus wireless.

E. Application Virtualization

Based on our issues with golden image sprawl, we will
be investigating application virtualization or layering technolo-
gies.

IX. CONCLUSION

We have found that using Apache VCL and OpenStack
together is a suitable solution and meets many of our require-
ments for a VDI-lite system to provide a virtual computing
lab. Improvements have been made to the OpenStack module
for Apache VCL and the NAT patch has been contributed
upstream. Both the NAT and OpenStack module are scheduled
to be integrated into Apache VCL and should be part of the
next release, depending on core developer workload.

During the pilot we also discovered new requirements,
such as the need for application virtualization or layering to
reduce the number of golden images and help with relicensing
applications which cannot use a licensing server.

Through this pilot it has become apparent that there are few
cost-effective solutions to our “VDI-lite” virtual computing lab
needs. However, with appropriate modifications and additions,
together Apache VCL and OpenStack can meet those require-
ments.

ACKNOWLEDGMENTS

Cybera would like to thank the Government of Alberta,
Ministry of Innovation and Advanced Education for funding
this project, as well as the University of Alberta for collabo-
ration and support throughout the project.

REFERENCES

[1] https://vcl.apache.org/
[2] http://openstack.org
[3] Young, Oh, https://issues.apache.org/jira/browse/VCL-590, 12 7 2012.
[4] http://search.cpan.org/∼ironcamel/Net-OpenStack-Compute-1.1002/lib/

Net/OpenStack/Compute.pm
[5] Young, Oh, http://markmail.org/message/dej4uivqxkpf25ik, 17 5 2012
[6] http://gridcentric.com


